Sample Average Approximation Method for Stochastic Programming Problems with Probabilistic Criteria

Sergey Ivanov Andrey Kibzun Sobolev Institute of Mathematics Acad. Koptyug avenue, 4, Novosibirsk, Russia, 630090 sergeyivanov89@mail.ru Moscow Aviation Institute, Volokolamskoe shosse, 4, Moscow, Russia, A-80, GSP-3, 125993 kibzun@mail.ru

Stochastic programming problems with probabilistic and quantile criteria [1] are considered. Let a loss function $\Phi(u,x)$ be given, where $u \in U \subset \mathbb{R}^m$ is an optimization strategy, U is a compact set, x is a realization of a random vector X. The probability function is defined as $P_{\varphi}(u) \triangleq \mathbf{P}\{\Phi(u,X) \leq \varphi, Q(u,X) \leq 0\}$, where Q(u,x) is a given function describing additional probabilistic constraints. We suppose that the functions Q(u,x)and $\Phi(u,x)$ are measurable and lower-semicontinuous in $u \in U$. The quantile function is the minimal level of losses $\Phi(u,x)$ that cannot be exceeded with a fixed probability α , i.e. $\varphi_{\alpha}(u) \triangleq \min\{\varphi \mid P_{\varphi}(u) \geq \alpha\}$. We consider the probability maximization problem $\max_{u \in U} P_{\varphi}(u)$ and the quantile minimization problems $\min_{u \in U} \varphi_{\alpha}(u)$.

According to the Sample Average Approximation Method, the considered problems are approximated by similar problems in which the probability function $P_{\varphi}(u)$ is replaced by its sample estimator $P_{\varphi}^{(n)}(u)$, where *n* is the sample size. Using the result [2], we show that the sequence $\{P_{\varphi}^{(n)}(\cdot)\}$ hypo-converges to $P_{\varphi}(\cdot)$ almost surely as $n \to \infty$. The hypoconvergence ensures that all limit points of the sequence of optimal solutions $\{u_{\varphi}^{(n)}\}$ to the problems $\max_{u \in U} P_{\varphi}^{(n)}(u)$ are optimal solutions to the probability maximization problem.

The conditions of convergence of optimal solutions $\{u_{\alpha}^{(n)}\}$ to the minimization problems $\min_{u \in U} \min\{\varphi \mid P_{\varphi}^{(n)}(u) \ge \alpha\}$ can be obtained from [3] for the case of continuous in $u \in U$ functions Q(u,x) and $\Phi(u,x)$. In this work, we suggest conditions ensuring that all limit points of the sequence of optimal solutions $\{u_{\alpha}^{(n)}\}$ are optimal solutions to the quantile minimization problem. In these conditions, the function Q(u,x) and $\Phi(u,x)$ are lower-semicontinuous in $u \in U$.

We apply the obtained results to two-stage and bilevel stochastic programming problems with probabilistic criteria.

References

- Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and Quantile Functions. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons, 1996.
- [2] Artstein Z., Wets R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs, Journal of Convex Analysis, v. 2, pp. 1-17, 1996.
- [3] Pagnoncelli B.K., Ahmed S., Shapiro A.: Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications, J. Optim. Theory Appl., v. 142, pp. 399-416, 2009.